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Abstract 

The distribution of valence among the bonds in the 
bond graph of an inorganic compound is used to 
calculate an 'entropy'. We show that the distribution 
of valence that maximizes this entropy (ME) is similar, 
but not identical, to that obtained using the equal- 
valence rule (EVR) proposed by Brown [Acta Cryst. 
(1977), B33, 1305-1310]. Since the ME solutions are 
maximally non-committal with regard to missing 
information, they give better predictions of the 
observed valence distributions than the EVR solutions 
when lattice constraints or electronic anisotropies are 
present, but worse predictions when these effects are 
absent. Since valences calculated using ME are 
necessarily positive, they give significantly better 
predictions in cases where EVR predicts a negative 
bond valence. In the absence of electronic distortions 
the observed bond graph is either the graph with the 
highest maximum entropy or it has an entropy within 
1% of this value. Since the entropy depends on the 
oxidation states of the atoms, compounds with the 
same stoichiometry and cation coordination numbers 
but different atomic valences may adopt different 
bond graphs and hence different structures. 

1. Introduction 

Prediction of the crystal structure of a compound from 
the knowledge of its chemical formula and the prop- 
erties of its atoms (atomic valence and coordination 
number) is one of the most challenging subjects in 
materials science and crystallography. Recently one of 
us has shown that the restrictions imposed by both 
chemistry and three-dimensional space on structures 
of inorganic crystals can be analysed using the bond- 
valence model and space-group theory (Brown, 1997) 
by assuming that the structure adopted has the highest 
possible symmetry. A full description of the bond- 
valence model, which has its roots in Pauling's concept 
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of bond strength, has been given by Brown (1992a). In 
this model each atom i in an inorganic solid is 
assigned an atomic valence (V i, positive or negative), 
which is normally equal to its oxidation state, and each 
atom is connected by Ni bonds to nearest neighbours 
that have a valence of opposite sign. Thus, the struc- 
ture is represented by a network of atoms linked by 
bonds in which atoms with positive valence (cations) 
are bonded only to atoms with negative valence 
(anions) and vice versa. Bond valences, sij, can be 
assigned to the bonds between atoms i and atoms j 
under the condition that the bond-valence sum around 
any atom is equal to its atomic valence, i.e. the valence 
sum rule given by (1) 

Zjs,j = v,. (1) 

Equation (1) essentially corresponds to Pauling's 
electroneutrality principle. The usefulness of bond 
valences lies in the empirical correlation found 
between them and the lengths R o of the bonds as 
given by (2) (Brown & Shannon, 1973; Brown & 
Altermatt, 1985) 

sq = exp([R 0 - Rq]/B), (2) 

where R0 and B are constants whose values have been 
determined empirically for each pair of atoms that 
form bonds (Brown & Altermatt, 1985; Brese & 
O'Keeffe, 1991). 

The principle of maximum symmetry is a useful 
heuristic when simulating structures using the bond- 
valence model. It states that the observed structure is 
the most symmetric, consistent with the constraints 
acting on the system. Since the sum rule (1) is not 
usually sufficient to uniquely determine the distribution 
of valence among the bonds of the network, we can 
invoke the principle of maximum symmetry which 
implies that the valence should be distributed as 
uniformly as possible among the bonds. The most 
uniform distribution is the one in which all bonds have 
equal valence, but such a distribution does not in 
general satisfy the valence sum rule (1). One possible 
distribution, that which obeys (1) and minimizes the 
least-squares deviation from the average valence, is that 
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Table 1. Calculated and observed bond valences for CaCrF5 (structure data is taken from Wu & Brown, 1973) 

Ca--2F(1) Ca--4F(2) Ca--F(3) Cr--2F(1) Cr--2F(3) Cr--2F(2) cr 

EVR 0.39 0.26 0.18 0.61 0.41 0.48 0.03 
ME 0.36 0.26 0.22 0.64 0.39 0.47 0.04 
RB 0.40 0.27 0.13 0.60 0.43 0.47 0.03 
Observed 0.36 x 2 0.30 x 2 0.17 0.60 x 2 0.46 x 2 0.49 x 2 

0.23 x 2 

Table 2. Calculated and observed bond valences for KVO~ (structure data is taken from Evans, 1960) 

V -- 20(1 ) V -- 20(2) K -- 40( 1 ) K -- 40( 1 ) K -- 20(2) cr 
EVR 1.38 1.12 0.15 0.15 -0.12 0.14 
ME 1.56 0.94 0.11 0.11 0.06 0.07 
RB 1.57 0.93 0.I 1 0.11 0.07 0.07 
Observed 1.50 0.99 × 2 0.17 0.18 0.17 × 2 

1.47 0.12 0.06 
0.07 × 2 0.03 x 2 

which satisfies the equal-valence rule given by (3) 
(Brown, 1992b) 

~,loop~ijSij = 0, (3) 

where &ij = 1 if the loop traverses a bond from the 
cation i to the anion j and &ij = - 1  if the bond is 
traversed in the opposite direction. 

Equat ions (1) and (3), known as the network 
equations, are similar to the Kirchhoff  laws for elec- 
trical networks and provide a unique solution for the 
valence distribution in the bond network. The solution 
thus obta ined is referred to as the Equal-Valence Rule 
(EVR)  solution. For many inorganic compounds the 
EVR solution agrees well with the bond valences 
calculated from the bond lengths in observed crystal 
structures (Brown, 1977, 1992a), as shown for example 
in Table 1 where the predicted and observed bond 
valences of CaCrF5 differ by only 0.03 valence units 
(v.u.). However,  in a number  of compounds the 
observed bond valences differ significantly from those 
calculated using the network equations, as illustrated 
in some of the examples discussed below. There are 
essentially two reasons for this breakdown of the 
EVR: the cations may show electronic distortions (e.g. 
the Jahn-Teller  effect around Cu 2÷) or the bonds may 
be strained as a result of the constraints that occur 
when the bond graph is mapped into three-dimen- 
sional space. Electronic or lattice constraints often 
result in bonds having different lengths, even though 
they are equivalent  in the connectivity table or bond 
graph (defined in §2). The presence of such differences 
in an observed structure is a strong indication of the 
presence of lattice constraints or electronic aniso- 
tropies. For example, in KVO3 the six crystal- 
lographically distinct K- -O(1)  bonds listed in Table 2 
are equivalent  in the bond graph, but have observed 
bond valences that range from 0.03 to 0.18 v.u. The 
presence of lattice constraints is further indicated by 
the EVR predict ion of a negative K- -O(2)  bond 

valence which, according to (2), is incompatible with 
an observed bond. Rutherford  (1990) considers the 
calculation of a negative bond valence as a weakness 
of the EVR which places too much emphasis on 
equalizing valences around strongly bonded cations at 
the expense of those that are weakly bonded and he 
has recently explored other  methods of estimating the 
bond valence that avoid this problem (Rutherford,  
1998). In particular, he explores the Resonance-Bond 
model  (RB) of Boisen et aL (1988), as well as a 
modification of the EVR constrained to give positive 
valences. 

In §2 and §3 we propose an alternative approach for 
determining the distribution of the bond valence based 
on the Maximum-Entropy method (ME). Such a 
distribution should give a bet ter  prediction in cases 
where the EVR is not the only determinant  of the 
bond lengths, as ME remains maximally non-commit tal  
to the unknown addit ional factors. In §4 we show that 
ME also provides a way of finding the most symmetric 
connectivity (bond graph) when there is more than 
one way of connecting atoms to form the bond 
network. 

2. Bond graph and the maximum-entropy method 

A crystal structure can be represented by an infinite 
network of atoms connected by bonds. This network 
can be factored into a short-range component  (the 
arrangement  of nearest  neighbours)  determined by the 
chemistry (the bonding preferences of each atom) and a 
long-range component  determined by the translat ional  
symmetry elements of the space group (Brown, 1997). 
Since the bond-valence model describes only the 
chemistry, the long-range order need not initially be 
considered, al though the influence of lattice constraints 
on the bond length may ultimately modify the geometry 
that would be expected from chemical considerations 
alone. 
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It is therefore sufficient when considering the initial 
assignment of bond valences to work with a finite 
connectivity graph that indicates how the atoms of a 
single formula unit are linked together. Such a graph, 
known as a bond  graph, may be represented by 
diagrams such as those given in the first five figures of 
this paper. It is convenient to distinguish this graph, 
which shows how the atoms are linked, but in which all 
the links have equal value, from the valence graph 
which is the same graph with each bond weighted 
according to its valence. The purpose of the analysis 
described in this paper is to discover how to create the 
valence graph that best corresponds to the observed 
structure. 

The maximum entropy method is widely used to 
reconstruct an intensity distribution of an image from a 
degraded or incomplete distribution. Under these 
circumstances the true distribution is unknown and 
there are many possible distributions consistent with 
the degraded distribution. The maximum entropy 
method (ME), by looking for the arrangement with the 
maximum configurational entropy, allows one to 
determine the most probable reconstructed distribution 
that is consistent with both the observed distribution 
and any other information that may be available. Such a 
distribution remains maximally non-committal with 
regard to any missing information (Daniell, 1991). 

For a discrete intensity distribution of an image ~}, 
the configurational entropy of the distribution is usually 
defined as 

S = - E f i .  ln(f i /mi) ,  (4) 

where {m/} is an initial estimate of the distribution 
representing any information about the distribution 
that is already known. If there is no prior knowledge of 
the nature of the distribution, the principle of maximum 
symmetry implies that a uniform distribution should be 
used as an initial estimate, i.e. all the m/'s are equal and 
can be set to unity. 

Assuming that the bond graph is already known, 
which implies that we know the chemical formula and 
chemical connectivity, a valence graph is constructed 
by assigning to each bond in the bond graph a valence 
that is consistent with any prior knowledge of the 
valence distribution. The valence-sum rule (1) consti- 
tutes such prior knowledge since it is involved in the 
definition of the bond valence and is rarely violated in 
observed structures. The equal-valence rule (3), 
however, although obeyed in many structures, is 
violated when anisotropic electronic effects or lattice 
constraints are present and therefore cannot be 
presumed to hold in general. Unfortunately, the 
valence-sum rule does not lead directly to an initial 
estimate {m~j} and it must be brought in as a restriction 
on the values of sij when the entropy is maximized. 
Identifying the distribution ~} with the distribution of 
bond valences {s/j}, the configurational entropy of the 

valence graph is given by (5) 

S = - Esij. ln(siJmij),  (5) 

where the summation is over all bonds in the graph. A 
distribution {so} that obeys the valence-sum rule, but 
remains maximally non-committal with respect to 
other chemical or spatial constraints, can be derived 
by maximizing S subject to the valence-sum rule (1). 
Using the same method of undetermined multipliers 
that was used to derive the EVR loop equation (3) 
(Brown, 1992b), it is easy to show that S is maximized 
when 

~Eioop~ij. ln(sij/mij) = 0, (6) 

where the summation is made around any closed loop 
within the bond graph and 6o has the same values as 
in (3). When no prior information is available to 
determine the initial distribution, the principle of 
maximum symmetry requires {mij} to be set to 1.0, 
leading to the simple equation (7)t 

Eloop6/j. In(s/j) = 0. (7) 

Equation (7) is, therefore, the loop equation that 
should be used when the intent is to maximize the 
entropy of the valence distribution. Equations (1) and 
(6) or (1) and (7) thus form an alternative set of 
network equations that give unique solutions for any 
bond graph. Furthermore, the logarithmic form 
ensures that all the bond valences s~j will be positive. 
The bond-valence distribution {sij} obtained from (1) 
and (7) is referred to as the maximum-entropy (ME) 
distribution. It corresponds to the most probable and 
most uniform distribution of all that are consistent 
with the bond-valence sum rule (Daniell, 1991), 
whereas the EVR distribution is that which minimizes 
the difference between the calculated values of s~j and 
the average of all bond valences in the structure 
(Brown, 1992b). The EVR solution is the solution that 
has been shown to give good predictions when elec- 
tronic anisotropies and lattice constraints are absent. 

Both the EVR and ME approaches define loop 
equations (3) and (7), respectively. The difference in the 
distributions calculated using these two equations can 
best be understood by considering the relations 
between the bond valences in a four-membered ring. If 
the valences, taken in order around the ring, are 
labelled as sl, s2, s3 and s4, the EVR requires that 
s 1 - -  S 2 ---- S 4 - -  $3, while ME requires that sa/s2 = Sa/S3. If 

t This derivation assumes a uniform probability of all graphs in 
valence space, but this does not correspond to a uniform distribution 
in distance space because of the non-linear character of (2). Even 
though observations used to verify the hypotheses are necessarily 
made in distance space, it is the valence space that better describes the 
chemistry as there is no simple equivalent of the valence-sum rule in 
distance space. However, if it were desired to take lattice constraints 
into account, this would have to be done in distance space. 
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Table 3. Calculated and observed bond valences for columbite AB206 (A = Mn, Fe, Co, Ni, Zn; B = Nb) 

EVR 
ME 
Observed 
Mn 

Fe 

Co 

Ni 

Zn 

A - - 4 0 ( 1 )  A - -20 (2 )  B- -O(1 )  B - - 2 0 ( 2 )  B - - 3 0 ( 3 )  

0.42 0.17 1.17 0.92 0.67 
0.37 0.26 1.26 0.87 0.67 

0.34 x 2 0.47 x 2 1.38 1.06 0.89 
0.26 x 2 0.60 0.60 

0.37 
0.34 × 2 0.38 x 2 1.35 0.97 0.88 
0.33 × 2 0.63 0.65 

0.37 
0.31 x 2 0.39 × 2 1.16 1.10 0.94 
0.29 × 2 0.63 0.66 

0.37 
0.35 × 2 0.34 × 2 1.30 1.00 0.87 
0.32 × 2 0.61 0.64 

0.40 
0.37 × 2 0.40 × 2 1.25 1.04 0.93 
0.28 × 2 0.58 0.61 

0.37 

(a) Weitzel (1976); (b) Bordet et al. (1986); (c) Waburg & Mfiller-Buschbaum (1984). 

a ( E V R )  t~(ME) Reference 

0.22 0.18 (a) 

0.18 0.14 (b) 

0.19 0.17 (a) 

0.16 0.14 (a) 

0.19 0.16 (c) 

sl and s2 are both large, and s 3 and s 4 are both small, the 
EVR will exaggerate the valence difference between 
the weak bonds, as pointed out by Rutherford (1990), 
leading in extreme cases, such as  K V O 3 ,  t o  the predic- 
tion of negative valences. ME, which requires only that 
the ratios be the same, may err in the opposite direction 
(cf. the V - - O  bonds in K V O 3 ) ,  but will at least ensure 
that all bond valences are positive. 

For bond graphs in which Sl = s2 and s4 = s3 for all 
loops, both approaches will yield the same solution. 
However, in these graphs the valence distribution is 
uniquely determined by the valence sum rule, so neither 
(3) nor (7) is required for a solution. 

3. Examples 

For all examples presented here, the bond-valence 
parameters R0 and B of Brown & Altermatt (1985) are 
used to calculate bond valences from the observed bond 
lengths. All the examples discussed, apart from the first, 
have been chosen because the EVR does not give good 

F(I) 

/ /  F(2) 

Ca - 

F(I) 

predictions of the valence distributions for the reasons 
given below. 

CaCrF5 (Wu & Brown, 1973) is an example of a 
compound, for which the EVR approach gives an 
excellent prediction of the valence graph, since neither 
lattice strains nor electronic anisotropies are present 
(Brown, 1992a). The bond graph is shown in Fig. 1, and 
Table 1 compares the EVR and ME predictions with 
the observations. For comparison, the RB valences 
given by Rutherford (1998) are also shown. The root- 
mean-square (r.m.s.) deviation of the calculated from 
the observed valences (o-) shows that, while all three 
methods give good predictions, the EVR and RB 
predictions are slightly better than ME. 

K V O 3  (Evans, 1960) has the bond graph shown in 
Fig. 2 and the EVR, ME, RB and observed valences are 
given in Table 2. The EVR solution for this graph gives 
a negative valence for the K--O(2)  bond, because of 
the requirement that the difference between the 
valence of K--O(1)  and K--O(2)  must equal the 
difference of the valence between V--O(1)  and V-- 
0(2). Since the atomic valence of V is large (+5), the 
difference between the valence of V--O(1)  and V-- 
0(2)  ("0.5 v.u.) is much larger than the valence of 
either K--O(1)  or K--O(2),  resulting in one of the K-- 
O bonds having a negative valence. Such an EVR 

~ o(1) 

K ~- 0(2) - -  

O(1) 

Fig. 1. Bond graph for CaCrFs. Fig. 2. Bond graph for KVO3. 
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Table 4. Calculated and observed bond valences for brannerite A B 2 0  6 ( A  = Ca, Cd; B = V) 

The values in parentheses correspond to the bond graph neglecting the weakest V--O(2) bond (structure data are taken from Bouloux et al., 
1972). 

A --40(2) A --20(2) B-- O(1) B-- 20(2) B-- 30(3) rT(EVR) r~(ME) 

EVR 0.42 (0.29) 0.17 (0.43) 1.17 (1.43) 0.92 (1.57) 0.67 
ME 0.37 (0.31) 0.26 (0.37) 1.26 (1.37) 0.87 (1.63) 0.67 
Observed 

Ca 0.35 x 4 0.36 x 2 1.40 1.67 0.75 x 2 0.36 (0.07) 0.35 (0.05) 
0.01 0.63 

Cd 0.36 x 4 0.45 x 2 1.37 1.29 0.81 x 2 0.32 (0.12) 0.30 (0.13) 
0.01 0.61 

Table 5. Calculated and observed bond valences for the Ruddlesden-Popper phase Sr2NdMn207 (space group 
I4/mmm) 

Sr and Nd are distributed randomly over A(1) in the 2(b) site and 3(2) in the 4(e) site. Structure data are taken from Battle et al. (1996). 

3(1)--O(1) A(1)--O(3) A(2)--O(2) A(2)--O(3) Mn--O(1) Mn--O(2) Mn--O(3) a 

EVR 0.20 0.19 0.28 0.24 0.59 0.61 0.57 0.05 
ME 0.20 0.19 0.27 0.24 0.60 0.64 0.57 0.05 
Observed 0.19 x 4 0.20 × 8 0.42 0.26 × 4 0.63 0.58 0.64 x 4 

0.19 x 4 

solution indicates that no K- -O(2)  bond should appear 
in the ideal bond graph, but the requirements of the 
three-dimensional structure bring these two atoms close 
enough to form a bond. As expected, the EVR 
predictions do not agree well with the observed 
valences (or = 0.14 v.u.), while the ME and RB predic- 
tions are much better (or = 0.07 v.u.). The failure of the 
EVR here is attributed to a lattice constraint whose 
presence is indicated by the different valences observed 
for the eight K- -O(1)  bonds which are equivalent in the 
bond graph. 

In the columbite and brannerite A2+B~+O6 struc- 
tures, in which B is a d o transition metal, the octahedral 
environment of B exhibits strong out-of-centre elec- 
tronic distortions as a result of a second-order Jahn-  
Teller effect (Kunz & Brown, 1995). This results in a 
violation of the equal-valence rule (3) and, in the 
maximum entropy method, the knowledge about the 
electronic distortion is treated as missing information. 
The bond graph for these structures is shown in Fig. 3. 

A ~ " ~  O ( 3 ) ~  

o 3,% 

Fig. 3. Bond graph for columbite and brannerite 3B206. 

The bond valences shown in Tables 3 and 4 indicate that 
neither method gives a good prediction because of the 
large electronic distortion that makes the two B--O(2)  
bonds very different, even though they are equivalent 
in the bond graph and hence are predicted to have the 
same valence. However, the values of cr show that the 
ME approach gives consistently better predictions for 
the bond valences than the EVR approach. The varia- 
tions in the bond valences observed for equivalent 
bonds in different columbite compounds indicate that 
lattice constraints are also active in this structure. 

The electronic distortion in the brannerites (A = Ca, 
Cd; B = V; Table 4) is much larger than in the colum- 
bites. One of the two V- -O(2)  bonds is much weaker 
than the other and arguably should be excluded from 
the bond graph. If this is done, both the EVR and ME 

2• 
0(2) ~ .  

A( 0(3) ~ M n  

O ( 3 ) ~  M n 

A( 0(2} 

Fig. 4. Bond graph for Ruddlesden-Popper phase Sr2NdMn207. Sr 
and Nd are randomly distributed over the A1 and A2 sites. 
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predictions are improved and both approaches give 
equally good predictions (see the values in parentheses 
in Table 4). 

A more complex example, in which lattice constraints 
are expected to be present, is given in Table 5, which 
shows the calculated and observed valences for the 
bond graph (Fig. 4) of the colossal magnetoresistance 
Ruddlesden-Popper phase, Sr2NdMn207. In spite of the 
lattice constraints indicated by the different valences 
observed for the graphically equivalent, but crystal- 
lographically distinct, A(2)- -0(2)  bonds, both methods 
give a satisfactory prediction for the average of the 
observed valences of the A(2)--O(2) bonds. 

4. Choice of bond graph for structure simulation 
The above analysis assumes that the bond graph is 
known, but in an a priori simulation of a crystal struc- 

ture the bond graph must first be generated. The 
formula unit and cation coordination numbers restrict 
the number of possible bond graphs, but even so several 
graphs can usually be generated. Fig. 5 shows the 
complete set of bond graphs for ABX3 compounds, in 
which A is eight-coordinate, B is six-coordinate, X has a 
coordination number between 1 and 6, and there are 
not more than two inequivalent X atoms. The graph 
expected in a real structure should be, according to the 
principle of maximum symmetry, the most symmetric, 
but what criterion should be used to rank the graphs in 
order of symmetry? This particular set of bond graphs is 
interesting because it is not easy to judge which is the 
most symmetric and because compounds are known 
that can be used to check any hypotheses. 

The problem of selecting the correct graph is more 
complex than determining the symmetry of just the 
bond graph, since it is the symmetry of the valence 

' * ~  X(l)f  B 
(a) 

i 
x(i) 

(el 

~ X ( l ) ~  

(b) q) 

(c) 

~ x ( 1 )  S 
(g) 

X ( l ) ~  

(d) 

j x ( i ) > ,  

~ x(2) B 

x(I) 
(h) Fig. 5. Hypothetical bond graphs for 

ABX3. 
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T a b l e  6. Bond-valence distribution and entropy o f  hypothetical bond graphs shown in Fig. 5 

Bond graph A--X1 A--X2 B--X1 B--X2 Entropy 

B6+O3 

a, b, c 1.0000 1.0000 0.0000t 
d, e 2.0000 0.5000 -1.3863 
A +B5+O3 

a 0.1250 0.7500 1.0000 2.9425 
b 0.1230 0.1310 0.8155 0.8690 2.9884t 
c 0.1329 0.1172 0.8672 0.7656 2.9811 
d 0.1250 1.5000 0.5000 2.2493 
e 0.1511 0.0466 1.5466 0.4767 2.0629 
A2+B4+O3 

a 0.2500 0.5000 1.0000 4.1589 
b 0.2417 0.2749 0.6375 0.7251 4.3835t 
c 0.2808 0.2192 0.7192 0.5616 4.3537 
d 0.2500 1.0000 0.5000 4.1589 
e 0.2945 0.1165 1.1165 0.4417 3.8587 
A 3+ B3+ 03 
a 0.3750 0.2500 1.0000 4.3289 
b 0.3558 0.4327 0.4664 0.5673 4.9971 
c 0.4430 0.3070 0.5570 0.3860 4.9316 
d 0.3750 0.5000 0.5000 5.0219t 
e 0.4246 0.2262 0.7262 0.3869 3.7890 
jr 0.1667 1.0000 0.5000 3.8712 
g 0.2500 0.5000 0.5000 4.8520 
h 0.5000 0.3333 0.5000 4.9698 
A4+B2+03 
b 0.4648 0.6056 0.3028 0.3944 4.9250 
c 0.6180 0.3820 0.3820 0.2361 4.8122 
e 0.5333 0.4000 0.2000 0.3000 4.9224 
f 0.3333 1.0000 0.3333 4.3945 
g 0.5000 0.5000 0.3333 4.9698t 
h 1.0000 0.3333 0.3333 4.3945 
AS+B+O3 

b 0.5686 0.7944 0.1472 0.2056 4.0706 
c 0.8042 0.4458 0.1958 0.1085 3.9007 
e 0.6137 0.6589 0.1589 0.1706 4.1390t 
f 0.5000 1.0000 0.1667 3.8712 
g 0.7500 0.5000 0.1667 4.0411 
h 1.5000 0.3333 0.1667 2.7726 
A6+O3 

b, e, f 0.6667 1.0000 1.6219t 
e, g 1.0000 0.5000 1.3863 
h 2.0000 0.3333 0.5754 
B3+F3 

a, b, c 0.5000 0.5000 2.0795t 
d, e 1.0000 0.5000 1.3863 
A +BZ+F3 
a 0.1250 0.2500 0.5000 4.1589 
b 0.1208 0.1375 0.3187 0.3625 4.2710t 
c 0.1404 0.1096 0.3596 0.2808 4.2563 
d 0.1250 0.5000 0.2500 4.1589 
e 0.1473 0.0583 0.5583 0.2209 4.0088 
AZ+B+F3 

b 0.2324 0.3028 0.1514 0.1972 4.5419 
c 0.3090 0.1910 0.1910 0.1180 4.4855 
e 0.2667 0.2000 0.2000 0.1500 4.5406 
f 0.1667 0.5000 0.1667 4.2767 
g 0.2500 0.2500 0.1667 4.5644t 
h 0.5000 0.1667 0.1667 4.2767 
A3+F3 

b, e, f 0.3333 0.5000 2.8904t 
c, g 0.5000 0.5000 2.7726 
h 1.0000 0.1667 1.7918 

t The highest entropy. 
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graph that is needed. The valence graph describes the 
distribution of bond valence in a bond graph and its 
symmetry depends on the oxidation states of the atoms 
as well as on the connectivity. ABX3 compounds of the 
type described above are known with A atom valences 
of 0,t +1, +2, +3 and +4, corresponding to B atom 
valences of +6, +5, +4, +3 and +2, respectively, when X 
is oxygen or sulfur. Oxides and sulfides could also in 
principle exist, although none is known, with A atom 
valences of +5 and +6, corresponding to B atom 
valences of +1 and 0, respectively. In addition, halides 
are known with A atom valences of +1 and B atom 
valences of +2. The determination of the most 
symmetric valence graph, therefore, needs to take into 
account not only the number of chemically distinct 
atoms and their coordination numbers, but also their 
oxidation states (atomic valences). 

There is no obvious choice for the most symmetric 
graph in Fig. 5, particularly when one has to take into 
account the distribution of valence among the bonds, 
although graphs b and c would probably rate high on 
most lists. However, the configurational entropy as 
defined in (5) with {mij} = 1 can be used as a convenient 
measure of the symmetry of a valence graph. If such an 
entropy is a valid measure of symmetry, the principle of 
maximum symmetry leads to the hypothesis that the 
graph with the highest such entropy will be that 
observed in nature. 

The bond valences calculated for the graphs of Fig. 5 
are listed in Table 6 for various possible combinations 
of the atomic valences of A and B. ME bond valences 
are used, because we do not know how large an effect 
the lattice constraints will have on the bond lengths, but 
EVR bond valences give the same ordering. Not all of 
the eight bond graphs shown in Fig. 5 are possible with 
all combinations of atomic valence, since some graphs 
contain bonds with null valence, thus effectively 
deleting these bonds and changing the graph so that it 
no longer belongs to the set being examined. For 
various combinations of atomic valences of A and B in 
AB03, Fig. 6 shows the relative entropies of all the 
graphs whose entropies lie within 2% of the graph with 
the highest entropy. 

The strongest bonds in the graph make the largest 
contribution to the entropy. Thus, the entropies of 
graphs a, b and c, which have the same topology around 
B, will converge as the valence of A approaches zero. 
Under these conditions graphs a, b and c have a higher 
entropy than graphs e and f, because they form equal 
numbers of bonds between B and each of the three X 
atoms. As the valence of A increases from 0 to +6 (in 
the oxides and sulfides) or from 0 to +3 (in the halides), 

t Valences of zero (corresponding to a missing atom) are included 
even though technically the resultant graph does not belong to the set 
of graphs being considered. However, these graphs represent natural 
end members of the series and the compound WO3 is known. 

the ordering of the graphs changes, but in all cases there 
are two or three graphs with entropies within 1% of the 
highest entropy, close enough that they must be 
considered plausible candidates for the observed 
structure. Graph b has the highest entropy for all graphs 
in which the valence of A is smaller than that of B, but 
graphs d, g and e come into contention when the 
valence of A is equal to, or larger than, that of B. 

Testing the hypothesis that the observed structure 
should have the bond graph corresponding to the 
valence distribution with the highest entropy is 
complicated by the fact that before a bond graph can be 
realized in nature it has to be mapped into a crystal- 
lographic space group. The principle of maximum 
symmetry applied to this mapping implies that graphs 
that can be mapped into space groups of high symmetry 
are preferred to those that can only be mapped into 
space groups of low symmetry. Thus, the symmetry of 
the space group as well as the symmetry of the valence 
graph must be taken into account. A technique for 
finding the highest symmetry space group for a given 
graph has been described by Brown (1997). Using this 
method graph c can be mapped into the space groups 
14/mcm and P4/mnm (both of which exist as distorted 
perovskite structures) and graph d can be mapped into 
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Fig. 6. The relative entropies of valence graphs shown in Fig. 5 as a 
function of the atomic valences of A and B in A B X 3  compounds. 
(a) X = O, S; (b) X = halogen. 
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the space group P4/mmm. Of the remainder, graphs a 
and f need not be considered as they have low entropies 
for all systems, and graph h is impossible to map into 
three-dimensional space because of the six bonds found 
between A and X2. An analysis of the possible site 
symmetries of the A and B atoms in the remaining 
graphs, b, g and e, shows that they cannot be mapped 
into special positions with site symmetries of order 
greater than 4 and so the graphs can only be found in 
space groups of low symmetry. From the point of view 
of space-group symmetry, therefore, graphs c and d are 
preferred to graphs b, g and e. 

In addition to the space-group symmetry, one also 
needs to consider which graphs give rise to favourable 
packing of the atoms, since structures that bring non- 
bonded atoms too close, or are limited by lattice 
constraints, will be less favourable than those where the 
ideal bond distances can be realized without strain. 
Graphs a, b and c are compatible with the corner- 
sharing octahedra found in distorted perovskite struc- 
tures, but are also compatible with the hexagonal 
perovskites in which some (or all) of the octahedra 
share faces. Graphs d and e require the octahedra to 
form tetragonal layers in which each octahedron shares 
four equatorial edges with its neighbours, leaving two 
terminal B--X1 bonds pointing along the fourfold axis. 
Graphs f, g and h can be mapped into structures in 
which the octahedra share six edges to form trigonal 
layers similar to those found in CdCI2 o r  M o S  2. For 
oxides and fluorides, face- and edge-sharing octahedra 
bring the B atoms into close contact and are therefore 
less favourable than corner-sharing arrangements. Thus, 
the spatial arrangements available to the octahedra 
favour graphs a, b and c over d, e, f and g. 

When all these factors are considered together, there 
is no compound in which the graph with the highest 
entropy has corner-sharing octahedra in a high- 
symmetry space group. Graph b has low crystal- 
lographic symmetry, graph c never has the highest 
entropy and graphs d, e and g all involve edge-sharing 
octahedra. 

Most of the known ABX3 compounds with eight- 
coordinate A and six-coordinate B have A atoms whose 
valence is less than or equal to that of B and most adopt 
a distorted perovskite structure. These have been 
conveniently summarized by Woodward (1997). The 
majority are found with graph b in space group Pbnm. 
However, other structures are known. Graph c, 
although never having the highest entropy, can crys- 
tallize in space groups with high symmetry. A few 
oxides and halides are found to crystallize in graph c, 
whose entropy lies within 1% of the entropy of the most 
symmetric graph (b) when the valence of ,4 is smaller 
than that of B. Significantly, graph c is not found for 
oxides and sulfides in which ,4 has a valence of +3, since 
its entropy is more than 1.0% smaller than that of either 
the highest symmetry graph d or the observed graph b. 

Although graph d can crystallize in a high-symmetry 
space group (P4/mmm), the octahedra are required to 
share edges, resulting in B--B repulsions that can only 
be relieved by an unfavourable tetragonal distortion of 
the octahedra. Graph d is unknown f o r  A3+B3÷X 3 
compounds, but is found for NH4HgC13. For this 
compound, in which the valence of A is +1 and B is +2, 
the entropy of graph d is 2.6% lower than the entropy 
of the highest symmetry graph b. However, graph d is 
acceptable, because its tetragonally distorted octahe- 
dron is an environment particularly favoured by the 
electronic structure of Hg 2÷ and the cubic environment 
of NH4 + is particularly favourable for the formation of 
hydrogen bonds. Compounds in which A has a larger 
valence than B are rare. The only example in this series 
that we have found is UFeS3, which adopts graph b in 
space group Cmcm rather than the higher entropy 
graph g that requires edge-sharing octahedra. 

It should be noted that the columbite and brannerite 
structures also adopt a bond graph that is clearly not 
the most symmetric. The trirutile structure adopts a 
more symmetric graph (S = 4.021), but the low- 
symmetry graph shown in Fig. 3 (S = 3.635) is stabilized 
by the electronic distortions of the d o Nb 5+ and V 5÷ ions 
(Kunz & Brown, 1995). 

The above analysis shows that the entropy of a 
valence graph can be taken as a measure of its 
symmetry, but it is not the only factor that needs to be 
considered when modelling a structure. The ability of a 
graph to be mapped into a space group of high 
symmetry or to lead to a more favourable packing of 
the atoms may result in a lower entropy graph being 
observed, but in all the cases we have examined all the 
observed graphs have entropies that are within 1% of 
the entropy of the most symmetric graph, except where 
the resultant distortion is stabilized by an electronic 
anisotropy in one of the cations. 

5. Discussion 

The construction of a valence graph is an important 
step for structure simulation based on the bond-valence 
model. In such a simulation it is necessary to select the 
most symmetric valence graph compatible with the 
atomic valences and coordination numbers. The 
configuration entropy of the bond valence distribution 
provides an operational measure of the symmetry of a 
valence graph, leading to the expectation that the 
valence graph with the highest entropy is the one most 
likely to occur. However, if the space-group symmetry 
of a structure is high or the packing more favourable, 
graphs with entropy as much as 1% below the 
maximum may be found. Only when cations with 
electronic asymmetry are present have we found graphs 
with entropy less than 99% of the entropy of the most 
symmetric graph. 
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Once the bond graph has been selected, given the 
valence-sum rule and the principle of maximum 
symmetry, both the EVR and ME predict a uniform 
bond-valence distribution but with somewhat different 
biases. An EVR solution corresponds to a least-squares 
minimization of the deviation of the bond valences 
from their global as well as local averages subject to the 
bond-valence sum rule (Brown, 1992b). A ME solution 
is biased by a statistical probability, i.e. the ME solution 
is the most probable among all solutions compatible 
with known information (here, the bond-valence sum 
rule and the principle of maximum symmetry, but 
explicitly recognizing that there may be other 
constraints that are not known; Daniell, 1991). If it is 
known that electronic anisotropies or lattice constraints 
are absent, the EVR gives a better prediction, while 
ME gives a better prediction if these constraints are 
present but their extent is not known. Nevertheless, it is 
expected that the EVR and ME solutions will be close 
to each other for most structures, as shown in the above 
examples. As pointed out by Rutherford (1990), the 
EVR approach can place too much emphasis on 
equalizing valences around strongly bonded cations, 
resulting in negative valences for some bonds around 
weakly bonded cations. For such graphs ME, which 
ensures all bond valences are positive, produces a 
valence distribution closer to that observed. However, 
there are other methods, in particular the RB method, 
which are able to give predictions that agree well with 
observation, but avoid the problem of negative valences 
(Rutherford, 1998). 

Neither the EVR nor ME provides a satisfactory 
prediction of the bond valences for the structures with 
strong electronic distortions, although the ME solution 
is slightly better, as would be expected from the 
assumptions underlying the two models. In these cases 
the graph itself may be one that matches the electronic 
distortions and so may be a graph with relatively low 
entropy. If the influence of electronic anisotropy on the 
bond-valence distribution can be described quantita- 
tively, say by defining an estimated distribution {mo}, it 
may be possible to use ME to derive the bond-valence 

distribution using (6) following the procedure proposed 
by Kunz & Brown (1995). The new ME distribution of 
the bond valence would obey the valence-sum rule and 
be consistent with the knowledge of the electronic 
anisotropy, but it would still remain maximally non- 
committal to any as yet unknown lattice constraints. 
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